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Advantages of 
Active Learning
Active Learning is a form of machine learning used in complex test situations, such as in 
the functional testing of new components in the automotive industry. Initially, as with 
machine learning, the algorithm needs to be supplied with training data. However – and 
this is what is special about it – with Active Learning it can request the relevant training 
data and suitable parameters itself, and then go on to select them independently once it 
has the information it  needs.

In this way, Active Learning can reduce the amount of training data required and, 
consequently, the time and cost of entire processes by a factor of ten – therefore 
delivering results ten times faster than traditional approaches.

Daniel Haake and Dr. Andreas Maier, Senior Data Scientists at The unbelievable Machine 
Company (*um), have developed and successfully applied Active Learning to hardware-in-
the-loop testing of components for a major European automotive manufacturer.

In this white paper, they discuss how they went about it, and the benefits and 
opportunities afforded by Active Learning.



Before new components such as collision warning systems can be installed in vehicles and then sold, they 
must be tested to ensure that they function properly. One option is to install the vehicle component in a test 
vehicle and test the component manually. This involves considerable effort, as well as costing time and money. 
For example, the driving situation needs to be simulated using different initial situations. In addition, different 
driving speeds must be factored in, as must the distances between the vehicles. Depending on the type of 
component, there may be several parameters to take on board.

If we imagine a situation in which we only need to consider three parameters, for which we want to test 10 
different levels each, this results in 103 = 1000 different initial situations. If further parameters are added, the 
number of initial situations to be tested is multiplied accordingly.

To get to grips with this problem, the automotive industry uses “hardware-in-the-loop tests”, or HiL tests for 
short. In these tests, the real world is simulated by a computer. The component to be tested is connected to 
the computer or HiL simulator, which simulates the vehicle to be driven, via its interfaces. The component’s 
inputs are then fed with sensor data from the HiL simulator, which makes it possible to test the various 
parameters directly, one after the other.

Besides the advantage that the driving situation does not always have to be performed repeatedly in the real 
world, another advantage is that as soon as one test run has been completed, the next one can be started 
immediately. Furthermore, once a fault has been corrected on the component, the test can simply be repeated 
to see whether the fault has been corrected.

However, these HiL tests run in real time and iteratively, which makes it impossible to speed up the tests by 
using faster hardware or parallelization. A potential problem here is that tests can be carried out in situations 
where the result is already known beforehand, thus making the tests superfluous.

Hardware-in-the-Loop (HiL) tests

By way of example, let’s consider a test for a parking assistant. If the vehicle is 4.50 m long and the 
parking space is 4.70 m wide and the parking maneuver fails, then there is no need to test any parking 
spaces measuring 4.65 m, 4.60 m, 4.55 m or even less than 4.50 m.

For humans, it is only logical not to proceed any further with these tests. For the HiL simulator, however, 
these are only meaningless numbers; it tests every value of the defined parameter space. Superfluous 
testing costs time and money and blocks the test bench for other tests.



It is indeed. One option is to use machine learning and a certain 
previously defined number of parameters to train a classifier, such as a 
support vector machine or random forest, for example. A prediction can 
now be made for the parameters not used in the  training, and the 
predictions can be accepted as test results. But how good are these 
results really? How do we know that the classifier has been trained 
using appropriate parameter combinations that provide a good 
separating plane between the individual classes?

To prevent this, a large number of parameter combinations must be selected. This corresponds to the law of 
large numbers and minimizes any shifts caused by randomness.

The best solution would be to divide the parameter space into a training set, a validation set and a test set, as 
is usual with machine learning problems. But for this we need the class membership for all parameter 
combinations, which we would only get following a test in the HiL simulator. Here again, each parameter 
combination of the entire parameter space would have to be tested in the HiL simulator, which would make the 
use of machine learning obsolete. Moreover, we would only have trained a model that would work for future 
predictions. Since all parameter combinations have been tested by the HiL simulator, no further predictions 
would be necessary. In addition, the model could not be used for future test cases since some of them differ 
considerably.

Figure 1: Two-class problem and the problem of incorrect classification 
when using a random selection of only a few parameter combinations

Intelligent parameter 
selection for HiL tests

Is it possible to select 
the test parameters 
more intelligently, in 
order to save time and 
money, yet still achieve 
high test quality? 

If too few parameter combinations are selected for the training, a random selection of the parameter  
combinations could lead to those from a certain parameter space being selected more often. Figure 1  
expresses this more clearly. Here we see a two-class problem, which slightly overlaps in the middle. There is 
clearly a good separating plane in the range x = 0. However, when only a few random parameter combinations 
are selected to train a classification model, the separation line may slant to the left.



We would first try to develop a model with a few data points and then 
work to further improve the model over time. How can the model be 
further improved over time? By going on to test the data points, thereby 
determining their class membership, which enables us to expect the 
greatest possible information gain. Let’s stay with the example from 
Figure 1. Let’s assume that we have already trained a model with a few 
data points and that we therefore know that the separation line between 
the two classes must be somewhere in the middle of the graph. 
Consequently, we are already quite sure that the two edges of the graph 
belong to either one or the other class.

First, a certain number of data points are used to train an initial model. 
Then, using the computed model, the probability of belonging to a 
specific class is calculated for all unused data points. The data point(s) 
for which the model has calculated the greatest uncertainty regarding 
class membership are used to determine the actual class membership. 
Once the class membership of the data points with the greatest 
uncertainty is known, the model is re-trained with the initial data points 
and the data points with the greatest uncertainty. The procedure is 
repeated until a defined termination criterion has been reached. This 
offers the possibility to determine the average certainty of the model as 
regards the class membership of all data points. This criterion is known 
as Confidence.

Figure 2: Targeted selection of 
parameter combinations to 
improve the classification result 
(Active Learning)

The human 
parameter

As human beings, how 
would we try to find a 
well-functioning model 
with just a few data 
points? 

So, if we take a data point in the range of x = -4, we are quite sure that the data point will belong to the green 
class, and in the range x = 4 to the red class. In the range x = 0, however, there is a significant lack of certainty. 
So now, to improve our model, we would not select a data point to determine the actual class from the range 
x = -4 or x = 4, but from the range x = 0; this is how we can expect the greatest possible information gain to 
help us improve on our previous model.

This concept is in line with the Active Learning method. The basic assumption here is that the model can be 
improved at an early stage through the targeted selection of parameter combinations, which means that better 
forecast results can be achieved with fewer data points (cf. Figure 2).

The procedure for Active 
Learning corresponds to 
the above assumption of 
how a human being  
approaches the problem. 



where k is the number of classes and pi is the probability of the data point belonging to class i. 
𝑂𝑂 ∗ 𝑙𝑙𝑜𝑜𝑔𝑔2 0 will thus also be defined as 0 on the basis of

Knowing that a data point belongs 100% to class A and therefore 0% to class B gives me no further  
information. The result is known, the information content is 0. With a 50% to 50% distribution, however, the 
result provides me with a high information value. The information content is high. This is also reflected in the 
above formula. For a 100% to 0% distribution, the result is − (1 ∗ 𝑙𝑙𝑜𝑜𝑔𝑔2 1 + 0 ∗ 𝑙𝑙𝑜𝑜𝑔𝑔2 0) = −(0 + 0) = 0. For a 50% 
to 50% distribution, the result is − (0,5 ∗ 𝑙𝑙𝑜𝑜𝑔𝑔2 0,5 + 0,5 ∗ 𝑙𝑙𝑜𝑜𝑔𝑔2 0,5) = −(−0,5 − 0,5) = 1. The entropy value range 
is thus between 0 and 1. In Entropy Sampling, the data point with the highest information content should be 
selected. Accordingly, the data point with the highest entropy is selected next.

When determining a data point based on the greatest uncertainty, there are several ways to calculate the 
uncertainty. One way is to determine what is known as Least Confidence. This involves selecting the data point 
for which the model has calculated the least probability for the most likely class. If the model is 80 percent 
certain of its specific class prediction for a data point A, but only 60 percent certain for another data point B, 
data point B would be selected next.

For a classification problem with more than two classes, a Margin Sampling strategy can also be used. This 
involves taking each individual class and calculating the probability that the data point belongs to it. The data 
point selected will be the one where the difference between the two most probable classes is the least. Let’s 
suppose that for a data point A, the probabilities of belonging to a class in a three-class problem are 50% to 
49% to 1%, and for a data point B, the probabilities are 40% to 30% to 30%. The difference between the two 
most likely classes is now 1 percentage point for data point A, and 10 percentage points for data point B. Here, 
data point A would be selected next. With the Least Confidence method, however, it would have been data 
point B.

A third possibility is Entropy Sampling. Entropy is a term used in information theory to describe how high the 
information content of a message is. The entropy of a data point is calculated via the class membership 
probabilities of all classes K as follows:

Uncertainty calculation



As described above, the Active Learning algorithm is applied until a termination criterion is reached. This 
can be a certain number of runs. However, it is also possible to determine how certain the model is that 
the data points belong to a certain class. This value is known as Confidence and is calculated from the 
difference in probability of the two most probable classes of a data point.

If the probability for a data point for class A is 97.5% and for class B 2.5%, the Confidence for this data 
point is 0.95. The average confidence value for all the data points is now considered, in order to 
determine how certain the model is of its predictions. A specific Confidence value can now be defined 
for the termination of the Active Learning algorithm.

To check how well Active Learning works in HiL tests, 
data for the following test scenario were available (cf. 
Figure 3). Driving on a straight, three-lane highway was 
simulated. The test vehicle drove at a constant speed in 
the middle lane. The test vehicle’s speed was constant 
for all test scenarios. The so-called co-vehicle is driving in 
the left lane. This vehicle suddenly swerves into the 
middle lane and immediately performs an emergency 
braking maneuver. The test vehicle’s collision warning 
system is being tested here. If the collision warning 
system issues an audio warning, the test is deemed to 
have been passed; if it does not, the test is deemed to 
have been failed. This is therefore a 2-class problem 
involving the classes “passed” and “failed”. The 
parameters that were variable were the distance between 
the two vehicles and the speed of the co-vehicle at the 
start of  the test. The two parameters were tested at fixed 
distances, giving a parameter grid dimension of 22 * 22 
(cf. Figure 4).

Figure 3: Test scenario for the HiL test

Test procedure

The red data points signify that the collision warning 
system has not triggered, while the very faint red data 
points signify that the collision warning system has 
triggered. A clear-cut decision boundary can be seen, 
with just a few outliers.

Figure 4: HiL test data



To artificially increase the data base, the 
parameter grid was increased to 100 * 100 and 
the missing intermediate values were 
interpolated on the basis the known classes. In 
order to make the clear-cut decision boundary 
somewhat harder to find for the algorithm, an 
additional artificial five percent noise was 
generated (cf. Figure 5).

Figure 5: Interpolated data with artificially 
generated five percent noise

Determination of success
To determine how well the Active Learning algorithm performs, the following procedure was adopted. First, the 
data set was divided up into a training set and a test set. The training set was used to train the algorithm and 
the test set was used to calculate how good the algorithm’s predictions were, with Accuracy chosen as the unit 
of measurement. A small number of data points were randomly selected from the training set. These data 
points were stored in the so-called “Labeled Pool” and were used to perform the initial training. The remaining 
data points from the training set ended up in the “Unlabeled Pool”.

The initial training used an Extra Tree classifier, which is a special type of Random Forest. There are practical 
reasons behind the choice of classifier. Essentially, the aim is for the procedure to be subsequently used to 
select the parameter combinations to be tested in a HiL test. Consequently, it makes sense to use a model that 
is already quite stable against overfitting without hyperparameter tuning.

Using the initial model, the class membership probabilities of the data points in the Unlabeled Pool were 
calculated. The data point with the lowest confidence was selected, added to the Labeled Pool and removed 
from the Unlabeled Pool, using the criterion of Least Confidence. The model was then trained with the data 
points from the Labeled Pool and the procedure, involving selecting a new data point and retraining the model, 
was repeated 500 times.

The entire procedure was performed again. However, after the initial training, a data point was not selected 
from the Unlabeled Pool actively, but randomly. This makes it possible to show how the active selection of a 
data point influences the results as compared to random selection.



Figure 6 shows how the algorithm proceeded when 
additional data points were randomly selected. The orange 
dots represent the data points that were used for the initial 
training. The blue dots are the data points that were used to 
improve the previously trained model. In the case of Figure 
6, a new data point was always drawn randomly. In total, 
the selection of a new data point followed by retraining of 
the model was performed 500 times. As can be seen, the 
correct decision boundary was found to some extent, but it 
is quite unstable and shows a certain degree of overfitting. 
It can also be seen that the algorithm has allowed itself to 
be irritated by the noise, which has caused 
misclassifications to occur in the red class region.

Figure 6: Decision boundary after 500 runs 
of randomly selecting data points to 
improve the previously trained model

Figure 7, on the other hand, shows how the algorithm, 
using Active Learning after the initial training, selectively 
uses the data points that are at the actual decision 
boundary to improve the model. In the red class region, 
data points were initially provisionally selected through 
the noise in order to improve the model. However, only a 
few data points were selected there until it learned that it 
was just noise and that the actual decision boundary 
was somewhere else. Once the data point selection and 
retraining procedure had been repeated 500 times, the 
correct decision boundary was located quite clearly, in 
contrast to what happened with random data point 
selection.

Figure 7: Decision boundary after 500 runs 
of actively selecting data points to improve 

the previously trained model

If we now look at the accuracy measurements for the test 
set during retraining and compare the values for random 
selection of the data points used in retraining with those for 
active selection, we find that after 500 runs of retraining, 
accuracy is significantly greater with active selection than 
with random selection (0.93 to 0.88 - 0.89, cf. Figure 8).

It can also be seen that accuracy increases considerably 
faster. The level of accuracy that was achieved after 500 
runs of retraining with random selection was already 
reached after 40 to 50 runs with active selection, thus 
making it around 10 times faster.Figure 8: Accuracy development during data selection 

and retraining of the model, orange: random data point  
selection; blue: active data point selection



A similar picture emerges when looking at confidence, i.e., 
the value relating to how certain the model is of its 
classification of data points (cf. Figure 9). Here too, after 500 
runs of retraining, a significantly higher confidence value is 
achieved with active selection of data points than with 
random selection (0.95 to 0.82). In addition, the confidence 
value achieved after 500 runs of retraining with random 
selection is already reached after 40 to 50 runs with active 
selection, thus making it also around 10 times faster. 
Furthermore, as can be seen, the fluctuations in the curve 
are significantly smaller when the data points are selected 
actively.

Figure 9: Confidence development during data selection 
and retraining of the model, orange: random data point  

selection; blue: active data point selection

Conclusion
In summary, we can see that the Active Learning approach is very well suited to achieving high prediction 
quality even with just a few data points. Active Learning is particularly useful for HiL tests, since its intelligent 
selection of test parameters avoids unnecessary tests, thus offering considerable savings in terms of time 
and money.

However, a specific problem must be noted: if we take a closer look at Figure 7, we can see that no islands 
were found in the upper righthand corner when selection was performed actively. The Active Learning 
algorithm does not search there because it has no knowledge of the fact that there could be islands in that 
region. To alleviate this problem, the parameter space should be divided into several regions before the initial 
training is performed. The data points for the initial training should not be drawn at random, but should instead 
come from each region of the parameter space. Also, when data points are selected actively and a certain 
number of runs have been performed, a data point should either be selected randomly or come from a 
parameter space region that has not yet been tested. In this way, a finer subdivision of the parameter space 
can be achieved compared to that available before the initial training, and it can also be defined increasingly 
finely over time. This can ensure a larger space is covered as well as helping to locate islands.
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